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=Pi~L Adding colour to microscopy!

e Multilayer from first STEM lecture
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=PiL A way to probe chemistry
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=P~L Edges and peaks nomenclature

5 L family of peaks

K family of peaks
j"‘--..._______




=PrL Quiz

 EDXS: energy dispersive X-ray spectroscopy
= intensity spectrum of X-ray peaks separated by energy

 EELS: electron energy-loss spectroscopy
= intensity spectrum of energy lost by transmitting e-

 We look at a sample containing Oxygen. We detect the Oxygen K-edge both in
EELS and in EDXS. We find the transition at EeeLsin EELS and Eepxs in EDXS

e Do we have:
1) EeeLs > Eepxs
2) EeeLs = Eepxs

3) EeeLs < Eepxs
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=PiL X-ray generation

Radiative

* 3 basic de-excitation process: © g i@
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=PiL X-ray generation

Relative efficiency of X-ray and Auger
emission vs. atomic number for K lines
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Light element atoms return to fundamental state mainly by Auger

emission. For that reason, their K-lines are weak. In addition their
low energy makes them easily absorbed.

Q Arbitrary units

2 4 6 8 10U

To ionise an atom, the incident electron MUST have an
energy larger than the core shell level U>1. To be efficient,
it should have about twice the edge energy U>2.
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=P~L Separation of EDX peaks

EDX spectroscopy range ~0.3—20 keV
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=PiL Periodic table of X-ray peaks
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=PiL Periodic table of X-ray peaks
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P~L The EDX spectrum

 Example spectrum from fuel cell sample containing O, Cr, Mn, Fe, Co

e Spectrum of mostly well-defined peaks that e.g. can be fitted with Gaussians
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=Pi-L Bremsstrahlung background

e Continuum background of radiation emitted when e- velocity changed by atomic field

e Stronger at low keV; depends on atomic number Z
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“State-of-the-art” model by Chapman (down to 1 keV): Ijygm =

+ P + BrEX ray



cPi~L EDXS guantification

« [0 go from qualitative to quantitative: measure the intensities /; of the X-ray peaks (area
under the peak)

« Typically apply “Cliff-Lorimer” approach where calculate ratios of constituent elements:
Ca _ Iy
Cy Pl

« kyg: k-factor
— determined empirically by: standards / theoretical calculations / empirical models

» k-factors relate to probability of X-ray emission, probability of X-ray absorption and
probability of unabsorbed X-ray being detected

* Rule of thumb: quantification accuracy 10-20%. However, much better (e.g. 1%) can be
achieved in certain cases

e Detection limit; ~0.1 —a few at. %
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=P~L EDXS quantification

e Example: Cr-rich grain in fuel cell spinel layer
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cP~L Compared to SEM-EDXS

e (Can) Neglect correction factors for absorption and fluorescence in quantification

e High energy e—-beam and thin sample = X-rays emitted from narrow/confined
volume of sample in beam path direction

Pb(Zr, Ti)Os scattering models
SEM: 30 keV beam, bulk sample STEM: 300 keV beam, thin sample
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=Pi-L EDX detection

Modern standard is the Silicon Drift
Detector (SDD)

Incident X-ray absorbed in Si creates
e—-h+ pairs

Internal electric field drifts e~ charge
towards anode

Accumulated charge converted to
voltage by a pre-amplifier

Quantity of charge carriers depends
on X-ray energy
= measured voltage corresponds to

energy of detected X-ray

back contact

Example SDD detector design
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=P~L Detective quantum efficiency (DQE)

« SDD detectors are compact and fast, but poor DQE for X-rays =z 20 keV
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=Pi-L Detection geometry

Incident beam
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=PiL Detection geometry

 New standard is to use multiple SDDs to
increase solid angle of collection and hence
detection efficiency

* For example: “Super-X” on Osiris, Titan with 4
quadrants giving ~1 Sr solid angle of collection

o State-of-the-art: Thermo Fisher Scientific Ultra
with ~4 Sr
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=P~L STEM-EDXS data-cube

« EDXS map: acquire one spectrum per pixel position (x, y)
« Gives 3D data-cube of information with axes (x, y, E)

* Data can be post-processed — integrate area under peak to generate
qualitative elemental map
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cPi~L EDXS mapping: applications

* Multilayer sample — net counts maps




cPi~L EDXS mapping: applications

* Multilayer sample — integrated counts EDX spectra

1111111111
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=P~L Why integrate counts across spatial ROI?

* |In-Zn-0O layer:

Integrated from 270 x 25 = 6’750 px? Single pixel spectrum
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cP~L EDXS mapping: applications

* Fuel cell sample: Fe-doped MnCo204 spinel layer




cP~L EDXS mapping: applications

* Fuel cell sample: Fe-doped MnCo204 spinel layer
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=P~L Atomic resolution EDXS with Cs-STEM

o Sample of Pb(Zr, Ti)Oz on SrTiOs
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=P~L Atomic resolution EDXS with Cs-STEM

o Sample of Pb(Zr, Ti)Oz on SrTiOs
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=P~L Atomic resolution EDXS with Cs-STEM

o Sample of Pb(Zr, Ti)Oz on SrTiOs
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=P~L Atomic resolution EDXS with Cs-STEM

e Sample of Pb(Zr,Ti)
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